Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(23)2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-38067118

RESUMO

Store-operated calcium entry (SOCE) in cardiomyocytes may be involved in cardiac remodeling, but the underlying mechanisms remain elusive. We hypothesized that SOCE may increase nuclear calcium, which alters gene expression via calcium/calmodulin-dependent enzyme signaling, and elucidated the underlying cellular mechanisms. An experimental protocol was established in isolated adult rat cardiomyocytes to elicit SOCE by re-addition of calcium following complete depletion of sarcoplasmic reticulum (SR) calcium and to quantify SOCE in relation to the electrically stimulated calcium transient (CaT) measured in the same cell before SR depletion. Using confocal imaging, calcium changes were recorded simultaneously in the cytosol and in the nucleus of the cell. In ventricular myocytes, SOCE was observed in the cytosol and nucleus amounting to ≈15% and ≈25% of the respective CaT. There was a linear correlation between the SOCE-mediated calcium increase in the cytosol and nucleus. Inhibitors of TRPC or Orai channels reduced SOCE by ≈33-67%, whereas detubulation did not. In atrial myocytes, SOCE with similar characteristics was observed in the cytosol and nucleus. However, the SOCE amplitudes in atrial myocytes were ≈two-fold larger than in ventricular myocytes, and this was associated with ≈1.4- to 3.6-fold larger expression of putative SOCE proteins (TRPC1, 3, 6, and STIM1) in atrial tissue. The results indicated that SOCE in atrial and ventricular myocytes is able to cause robust calcium increases in the nucleus and that both TRPC and Orai channels may contribute to SOCE in adult cardiomyocytes.


Assuntos
Canais de Cálcio , Cálcio , Ratos , Animais , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Sinalização do Cálcio
2.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372947

RESUMO

CACNA1C encodes the pore-forming α1C subunit of the L-type Ca2+ channel, Cav1.2. Mutations and polymorphisms of the gene are associated with neuropsychiatric and cardiac disease. Haploinsufficient Cacna1c+/- rats represent a recently developed model with a behavioral phenotype, but its cardiac phenotype is unknown. Here, we unraveled the cardiac phenotype of Cacna1c+/- rats with a main focus on cellular Ca2+ handling mechanisms. Under basal conditions, isolated ventricular Cacna1c+/- myocytes exhibited unaltered L-type Ca2+ current, Ca2+ transients (CaTs), sarcoplasmic reticulum (SR) Ca2+ load, fractional release, and sarcomere shortenings. However, immunoblotting of left ventricular (LV) tissue revealed reduced expression of Cav1.2, increased expression of SERCA2a and NCX, and augmented phosphorylation of RyR2 (at S2808) in Cacna1c+/- rats. The ß-adrenergic agonist isoprenaline increased amplitude and accelerated decay of CaTs and sarcomere shortenings in both Cacna1c+/- and WT myocytes. However, the isoprenaline effect on CaT amplitude and fractional shortening (but not CaT decay) was impaired in Cacna1c+/- myocytes exhibiting both reduced potency and efficacy. Moreover, sarcolemmal Ca2+ influx and fractional SR Ca2+ release after treatment with isoprenaline were smaller in Cacna1c+/- than in WT myocytes. In Langendorff-perfused hearts, the isoprenaline-induced increase in RyR2 phosphorylation at S2808 and S2814 was attenuated in Cacna1c+/- compared to WT hearts. Despite unaltered CaTs and sarcomere shortenings, Cacna1c+/- myocytes display remodeling of Ca2+ handling proteins under basal conditions. Mimicking sympathetic stress with isoprenaline unmasks an impaired ability to stimulate Ca2+ influx, SR Ca2+ release, and CaTs caused, in part, by reduced phosphorylation reserve of RyR2 in Cacna1c+/- cardiomyocytes.


Assuntos
Cálcio , Canal de Liberação de Cálcio do Receptor de Rianodina , Ratos , Animais , Cálcio/metabolismo , Isoproterenol/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Sinalização do Cálcio , Cálcio da Dieta/farmacologia , Retículo Sarcoplasmático/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo
3.
Cells ; 11(19)2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36231118

RESUMO

Arterial hypertension affects ≈ 1 billion people worldwide. It is associated with increased morbidity and mortality and responsible for millions of deaths each year. Hypertension mediates damage of target organs including the heart. In addition to eliciting left ventricular hypertrophy, dysfunction and heart failure, hypertension also causes left atrial remodeling that may culminate in atrial contractile dysfunction and atrial fibrillation. Here, we will summarize data on the various aspects of left atrial remodeling in (essential) hypertension gathered from studies on patients with hypertension and from spontaneously hypertensive rats, an animal model that closely mimics cardiac remodeling in human hypertension. Analyzing the timeline of remodeling processes, i.e., distinguishing between alterations occurring in prehypertension, in early hypertension and during advanced hypertensive heart disease, we will derive the potential mechanisms underlying left atrial remodeling in (essential) hypertension. Finally, we will discuss the consequences of these remodeling processes for atrial and ventricular function. The data imply that left atrial remodeling is multifactorial, starts early in hypertension and is an important contributor to the progression of hypertensive heart disease, including the development of atrial fibrillation and heart failure.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Insuficiência Cardíaca , Hipertensão , Animais , Átrios do Coração , Humanos , Hipertensão/complicações , Miocárdio , Ratos , Ratos Endogâmicos SHR
4.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923401

RESUMO

Heart failure (HF) and atrial fibrillation (AF) are two major life-threatening diseases worldwide. Causes and mechanisms are incompletely understood, yet current therapies are unable to stop disease progression. In this review, we focus on the contribution of the transcriptional modulator, Jun dimerization protein 2 (JDP2), and on HF and AF development. In recent years, JDP2 has been identified as a potential prognostic marker for HF development after myocardial infarction. This close correlation to the disease development suggests that JDP2 may be involved in initiation and progression of HF as well as in cardiac dysfunction. Although no studies have been done in humans yet, studies on genetically modified mice impressively show involvement of JDP2 in HF and AF, making it an interesting therapeutic target.


Assuntos
Fibrilação Atrial/metabolismo , Insuficiência Cardíaca/metabolismo , Proteínas Repressoras/genética , Animais , Fibrilação Atrial/genética , Fibrilação Atrial/patologia , Biomarcadores/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Proteínas Repressoras/metabolismo , Remodelação Ventricular
5.
Sci Rep ; 11(1): 1931, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479375

RESUMO

Increased activation of sympathetic nervous system contributes to congestive heart failure (CHF) progression, and inhibition of sympathetic overactivation by beta-blockers is successful in CHF patients. Similarly, caloric restriction (CR) reduces sympathetic activity but mediates additional effects. Here, we compared the cardiac effects of CR (- 40% kcal, 3 months) with beta-blocker therapy (BB), diuretic medication (DF) or control diet in 18-months-old Wistar rats. We continuously recorded blood pressure, heart rate, body temperature and activity with telemetric devices and analysed cardiac function, activated signalling cascades and markers of apoptosis and mitochondrial biogenesis. During our study, left ventricular (LV) systolic function improved markedly (CR), mildly (BB) or even deteriorated (DF; control). Diastolic function was preserved by CR and BB but impaired by DF. CR reduced blood pressure identical to DF and BB and heart rate identical to BB. Plasma noradrenaline was decreased by CR and BB but increased by DF. Only CR reduced LV oxidative damage and apoptosis, induced AMPK and Akt phosphorylation and increased mitochondrial biogenesis. Thus, additive to the reduction of sympathetic activity, CR achieves protective effects on mitochondria and improves LV function and ROS damage in aged hearts. CR mechanisms may provide additional therapeutic targets compared to traditional CHF therapy.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Restrição Calórica , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos , Envelhecimento/fisiologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Diuréticos/farmacologia , Insuficiência Cardíaca/dietoterapia , Insuficiência Cardíaca/patologia , Frequência Cardíaca/fisiologia , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Miocárdio/patologia , Ratos , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/patologia , Função Ventricular Esquerda/fisiologia
6.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33265909

RESUMO

BACKGROUND: Cardiac-specific JDP2 overexpression provokes ventricular dysfunction and atrial dilatation in mice. We performed in vivo studies on JDP2-overexpressing mice to investigate the impact of JDP2 on the predisposition to spontaneous atrial fibrillation (AF). METHODS: JDP2-overexpression was started by withdrawal of a doxycycline diet in 4-week-old mice. The spontaneous onset of AF was documented by ECG within 4 to 5 weeks of JDP2 overexpression. Gene expression was analyzed by real-time RT-PCR and Western blots. RESULTS: In atrial tissue of JDP2 mice, besides the 3.6-fold increase of JDP2 mRNA, no changes could be detected within one week of JDP2 overexpression. Atrial dilatation and hypertrophy, combined with elongated cardiomyocytes and fibrosis, became evident after 5 weeks of JDP2 overexpression. Electrocardiogram (ECG) recordings revealed prolonged PQ-intervals and broadened P-waves and QRS-complexes, as well as AV-blocks and paroxysmal AF. Furthermore, reductions were found in the atrial mRNA and protein level of the calcium-handling proteins NCX, Cav1.2 and RyR2, as well as of connexin40 mRNA. mRNA of the hypertrophic marker gene ANP, pro-inflammatory MCP1, as well as markers of immune cell infiltration (CD68, CD20) were increased in JDP2 mice. CONCLUSION: JDP2 is an important regulator of atrial calcium and immune homeostasis and is involved in the development of atrial conduction defects and arrhythmogenic substrates preceding paroxysmal AF.


Assuntos
Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Remodelamento Atrial , Cálcio/metabolismo , Inflamação/patologia , Proteínas Repressoras/metabolismo , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/diagnóstico por imagem , Arritmias Cardíacas/fisiopatologia , Fibrilação Atrial/complicações , Fibrilação Atrial/diagnóstico por imagem , Sinalização do Cálcio/genética , Conexinas/metabolismo , Fibrose , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Sistema de Condução Cardíaco/diagnóstico por imagem , Sistema de Condução Cardíaco/patologia , Sistema de Condução Cardíaco/fisiopatologia , Hipertrofia , Inflamação/complicações , Camundongos Transgênicos , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retículo Sarcoplasmático/metabolismo
7.
Front Physiol ; 10: 56, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30787882

RESUMO

In cardiomyocytes, nuclear calcium is involved in regulation of transcription and, thus, remodeling. The cellular mechanisms regulating nuclear calcium, however, remain elusive. Therefore, the aim of this study was to identify and characterize the factors that regulate nuclear calcium in cardiomyocytes. We focused on the roles of (1) the cytoplasmic calcium transient (CaT), (2) the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA), and (3) intracellular calcium stores for nuclear calcium handling. Experiments were performed on rat ventricular myocytes loaded with Fluo-4/AM. Subcellularly resolved CaTs were visualized using confocal microscopy. The cytoplasmic CaT was varied by reducing extracellular calcium (from 1.5 to 0.3 mM) or by exposure to isoprenaline (ISO, 10 nM). SERCA was blocked by thapsigargin (5 µM). There was a strict linear dependence of the nucleoplasmic CaT on the cytoplasmic CaT over a wide range of calcium concentrations. Increasing SERCA activity impaired, whereas decreasing SERCA activity augmented the systolic calcium increase in the nucleus. Perinuclear calcium store load, on the other hand, did not change with either 0.3 mM calcium or ISO and was not a decisive factor for the nucleoplasmic CaT. The results indicate, that the nucleoplasmic CaT is determined largely by the cytoplasmic CaT via diffusion of calcium through nuclear pores. They identify perinuclear SERCA activity, which limits the systolic calcium increase in the nucleus, as a novel regulator of the nuclear CaT in cardiac myocytes.

8.
Clin Res Cardiol ; 108(6): 577-599, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30306295

RESUMO

Cardiac arrhythmias remain a common challenge and are associated with significant morbidity and mortality. Effective and safe rhythm control strategies are a primary, yet unmet need in everyday clinical practice. Despite significant pharmacological and technological advances, including catheter ablation and device-based therapies, the development of more effective alternatives is of significant interest to increase quality of life and to reduce symptom burden, hospitalizations and mortality. The mechanistic understanding of pathophysiological pathways underlying cardiac arrhythmias has advanced profoundly, opening up novel avenues for mechanism-based therapeutic approaches. Current management of arrhythmias, however, is primarily guided by clinical and demographic characteristics of patient groups as opposed to individual, patient-specific mechanisms and pheno-/genotyping. With this state-of-the-art paper, the Working Group on Cellular Electrophysiology of the German Cardiac Society aims to close the gap between advanced molecular understanding and clinical decision-making in cardiac electrophysiology. The significance of cellular electrophysiological findings for clinical arrhythmia management constitutes the main focus of this document. Clinically relevant knowledge of pathophysiological pathways of arrhythmias and cellular mechanisms of antiarrhythmic interventions are summarized. Furthermore, the specific molecular background for the initiation and perpetuation of atrial and ventricular arrhythmias and mechanism-based strategies for therapeutic interventions are highlighted. Current "hot topics" in atrial fibrillation are critically appraised. Finally, the establishment and support of cellular and translational electrophysiology programs in clinical rhythmology departments is called for to improve basic-science-guided patient management.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/terapia , Terapia Genética , Sistema de Condução Cardíaco/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Canais Iônicos/efeitos dos fármacos , Transplante de Células-Tronco , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Predisposição Genética para Doença , Sistema de Condução Cardíaco/metabolismo , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Mutação , Fenótipo
9.
J Mol Med (Berl) ; 96(11): 1239-1249, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30293136

RESUMO

In continuously beating cells like cardiac myocytes, there are rapid alterations of cytosolic Ca2+ levels. We therefore hypothesize that decoding Ca2+ signals for hypertrophic signaling requires intracellular Ca2+ microdomains that are partly independent from cytosolic Ca2+. Furthermore, there is a need for a Ca2+ sensor within these microdomains that translates Ca2+ signals into hypertrophic signaling. Recent evidence suggested that the nucleus of cardiac myocytes might be a Ca2+ microdomain and that calcineurin, once translocated into the nucleus, could act as a nuclear Ca2+ sensor. We demonstrate that nuclear calcineurin was able to act as a nuclear Ca2+ sensor detecting local Ca2+ release from the nuclear envelope via IP3R. Nuclear calcineurin mutants defective for Ca2+ binding failed to activate NFAT-dependent transcription. Under hypertrophic conditions Ca2+ transients in the nuclear microdomain were significantly higher than in the cytosol providing a basis for sustained calcineurin/NFAT-mediated signaling uncoupled from cytosolic Ca2+. Measurements of nuclear and cytosolic Ca2+ transients in IP3 sponge mice showed no increase of Ca2+ levels during diastole as we detected in wild-type mice. Nuclei, isolated from ventricular myocytes of mice after chronic Ang II treatment, showed an elevation of IP3R2 expression which was dependent on calcineurin/NFAT signaling and persisted for 3 weeks after removal of the Ang II stimulus. These data provide an explanation how Ca2+ and calcineurin might regulate transcription in cardiomyocytes in response to neurohumoral signals independently from their role in cardiac contraction control. KEY MESSAGES: • Calcineurin acts as an intranuclear Ca2+ sensor to promote NFAT activity. • Nuclear Ca2+ in cardiac myocytes increases via IP3R2 upon Ang II stimulation. • IP3R2 expression is directly dependent on calcineurin/NFAT.


Assuntos
Calcineurina/metabolismo , Cálcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Membrana Nuclear/metabolismo , Angiotensina II/farmacologia , Animais , Camundongos Endogâmicos C57BL , Contração Miocárdica , Miócitos Cardíacos/fisiologia , Ratos Wistar
10.
Methods Mol Biol ; 1816: 39-54, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29987809

RESUMO

High quality cardiomyocyte isolation is of critical importance for successful studies of myocardial function at the cellular and molecular level. Although previous work has established isolation procedures for various species, it still remains challenging to produce consistently a high yield of viable and healthy cardiomyocytes. The basis for the most successful and reproducible isolation of cardiomyocytes from intact hearts is the Langendorff retrograde perfusion technique. Here, we will illustrate in detail all practical aspects of the enzyme-based Langendorff isolation of rat atrial and ventricular cardiomyocytes. This includes a series of obligatory steps starting from quick aortic cannulation to rinse the heart from blood, short perfusion of the heart with Ca2+-free solution to dissociate cells at the level of intercalated discs, followed by longer perfusion with low Ca2+-containing enzyme solution in order to disrupt the extracellular matrix network, extraction of the released cardiomyocytes and gentle Ca2+ reintroduction to allow cells to return gradually to normal cytosolic Ca2+ levels. The average yield of intact viable ventricular myocytes that can be achieved with our protocol is ≈70% (range ≈50-90%). For atrial myocytes, in general, it is slightly (≈10%) lower than for ventricular myocytes. The yield depends on the age of the rat and the degree of cardiac remodeling such that digestion of older and more remodeled hearts (more fibrosis) usually results in lower yields. Isolated atrial and ventricular cardiomyocytes may be employed for studies of cardiomyocyte function (e.g., shortening/contraction, intracellular [Ca2+] transients) as well as for biochemical and molecular biological studies (e.g., immunoblotting, PCR).


Assuntos
Separação Celular/métodos , Átrios do Coração/citologia , Ventrículos do Coração/citologia , Miócitos Cardíacos/citologia , Animais , Cateterismo/métodos , Separação Celular/instrumentação , Células Cultivadas , Colagenases/metabolismo , Átrios do Coração/metabolismo , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Perfusão/métodos , Ratos
11.
J Mol Cell Cardiol ; 114: 253-263, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191788

RESUMO

Hypertensive heart disease (HHD) can cause left ventricular (LV) hypertrophy and heart failure (HF). It is unclear, though, which factors may contribute to the transition from compensated LV hypertrophy to HF in HHD. We hypothesized that maladaptive atrial remodeling with impaired atrial myocyte function would occur in advanced HHD and may be associated with the emergence of HF. Experiments were performed on atrial myocytes and tissue from old (15-25months) normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) with advanced HHD. Based on the absence or presence of elevated lung weight, a sign of lung congestion and heart failure, SHR were divided into a non-failing (SHR-NF) and failing (SHR-HF) group. Compared with WKY, SHR exhibited elevated blood pressure, LV hypertrophy and left atrial (LA) hypertrophy with increased LA expression of markers of hypertrophy and fibrosis. SHR-HF were distinguished from SHR-NF by aggravated hypertrophy and fibrosis. SHR-HF atrial myocytes exhibited reduced contractility and impaired SR Ca2+ handling. Moreover, in SHR the expression and phosphorylation of SR Ca2+-regulating proteins (SERCA2a, calsequestrin, RyR2 and phospholamban) showed negative correlation with increasing lung weight. Increasing stimulation frequency (1-2-4Hz) of atrial myocytes caused a progressive increase in arrhythmogenic Ca2+ release (including alternans), which was observed most frequently in SHR-HF. Thus, in old SHR with advanced HHD there is profound structural and functional atrial remodeling. The occurrence of HF in SHR is associated with LA and RA hypertrophy, increased atrial fibrosis, impaired atrial myocyte contractility and SR Ca2+ handling and increased propensity for arrhythmogenic Ca2+ release. Therefore, functional remodeling intrinsic to atrial myocytes may contribute to the transition from compensated LV hypertrophy to HF in advanced HHD and an increased propensity of atrial arrhythmias in HF.


Assuntos
Átrios do Coração/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Cálcio/metabolismo , Sinalização do Cálcio , Átrios do Coração/patologia , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/patologia , Hipertensão/complicações , Hipertensão/patologia , Hipertensão/fisiopatologia , Hipertrofia Ventricular Esquerda/complicações , Hipertrofia Ventricular Esquerda/patologia , Masculino , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Sarcômeros/metabolismo
12.
EMBO Mol Med ; 9(4): 403-414, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28242754

RESUMO

In a patient with right ventricular outflow tract (RVOT) tachycardia, we identified a heterozygous point mutation in the selectivity filter of the stretch-activated K2P potassium channel TREK-1 (KCNK2 or K2P2.1). This mutation introduces abnormal sodium permeability to TREK-1. In addition, mutant channels exhibit a hypersensitivity to stretch-activation, suggesting that the selectivity filter is directly involved in stretch-induced activation and desensitization. Increased sodium permeability and stretch-sensitivity of mutant TREK-1 channels may trigger arrhythmias in areas of the heart with high physical strain such as the RVOT We present a pharmacological strategy to rescue the selectivity defect of the TREK-1 pore. Our findings provide important insights for future studies of K2P channel stretch-activation and the role of TREK-1 in mechano-electrical feedback in the heart.


Assuntos
Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Sódio/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/fisiopatologia , Humanos , Pessoa de Meia-Idade , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo
13.
J Mol Cell Cardiol ; 101: 58-68, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27816525

RESUMO

Arterial hypertension causes left ventricular (LV) myocyte hypertrophy. Alterations in nuclear Ca2+ may be involved in regulation of histone acetylation, transcription and hypertrophy. Regulation of nuclear Ca2+ in hypertension, however, is unknown. Therefore, we elucidated cellular mechanisms underlying nuclear Ca2+ regulation in LV myocytes from hypertensive versus normotensive rats and evaluated possible consequences for Ca2+-dependent regulation of histone acetylation. LV myocytes and myocyte nuclei were isolated from young spontaneously hypertensive rats (SHR) shortly after development of hypertension. Normotensive Wistar-Kyoto rats (WKY) served as controls. Cytoplasmic and nucleoplasmic Ca2+ transients (CaTs) were imaged simultaneously using linescan confocal microscopy and Fluo-4. LV myocytes and nuclei from SHR exhibited hypertrophy. Cytoplasmic and nucleoplasmic CaTs were increased in SHR. The increase in nucleoplasmic Ca2+, however, exceeded the increase in cytoplasmic Ca2+, indicating enhanced nuclear Ca2+ signaling in SHR. Ca2+ load of sarcoplasmic reticulum and perinuclear Ca2+ stores was also increased in SHR, while fractional release from both stores remained unchanged. Intranuclear Ca2+ propagation was accelerated in SHR, associated with preserved density of nuclear envelope invaginations and elevated nuclear expression of nucleoporins and SR-Ca2+-ATPase, SERCA2a. Nuclear Ca2+/calmodulin-dependent protein kinase II delta (CaMKIIδ) expression was elevated and histone deacetylases exhibited redistribution from nucleus to cytosol associated with increased histone acetylation in SHR. Thus, in early hypertension, there is remodeling of nuclear Ca2+ handling resulting in enhanced nuclear Ca2+ signaling. Enhanced nuclear Ca2+ signaling, in turn, increases nuclear localization and activity of CaMKIIδ driving nuclear export of histone deacetylases and increased histone acetylation.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Hipertensão/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Hipertensão/etiologia , Masculino , Membrana Nuclear/metabolismo , Ratos , Ratos Endogâmicos SHR , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais , Transcrição Gênica
14.
Cardiovasc Res ; 110(3): 359-70, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27015675

RESUMO

AIMS: The angiotensin II type 1 receptor-associated protein (Atrap) is highly expressed in the heart, but its function in the heart is unknown. We hypothesized that cardiac Atrap may interact with proteins other than the AT1 receptor. METHODS AND RESULTS: To identify potential novel interacting partners of Atrap, pull-down assays were performed. Sequencing by MALDI-MS of the isolated complexes showed that Atrap interacts with the cardiac Ca(2+)-ATPase SERCA2a. The interaction between Atrap and SERCA2a was confirmed by co-immunoprecipitation and by surface plasmon resonance (SPR) spectroscopy. Atrap enhanced the SERCA-dependent Ca(2+) uptake in isolated SR membrane vesicles. Furthermore, sarcomere shortenings and [Ca(2+)]i transients (CaTs) were determined in ventricular myocytes isolated from Atrap-/- and wild-type (WT) mice. The amplitudes of CaTs and sarcomere shortenings were similar in Atrap-/- and WT myocytes. However, the CaT decay and sarcomere re-lengthening were prolonged in Atrap-/- myocytes. To further evaluate the functional relevance of the Atrap-SERCA2a interaction in vivo, left-ventricular function was assessed in WT and Atrap-/- mice. The heart rates (564 ± 10 b.p.m. vs. 560 ± 11 b.p.m.; P = 0.80) and ejection fractions (71.3 ± 1.3 vs. 72 ± 1.8%; P = 0.79) were similar in WT and Atrap-/- mice, respectively (n = 15 for each genotype). However, the maximum filling rate (dV/dtmax) was markedly decreased in Atrap-/- (725 ± 48 µL/s) compared with WT mice (1065 ± 122 µL/s; P = 0.01; n = 15). CONCLUSION: We identified Atrap as a novel regulatory protein of the cardiac Ca(2+)-ATPase SERCA2a. We suggest that Atrap enhances the activity of SERCA2a and, consequently, facilitates ventricular relaxation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Miócitos Cardíacos/enzimologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Sinalização do Cálcio , Diástole , Ativação Enzimática , Células HEK293 , Proteínas de Homeodomínio/metabolismo , Humanos , Imunoprecipitação , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Proteômica/métodos , Sarcômeros/enzimologia , Retículo Sarcoplasmático/enzimologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ressonância de Plasmônio de Superfície , Transfecção , Função Ventricular Esquerda
15.
J Anat ; 229(1): 75-81, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26990078

RESUMO

Left ventricular (LV) hypertrophy in response to hypertension and increased afterload frequently progresses to heart failure. It is under debate whether the loss of cardiomyocytes contributes to this transition. To address this question, female C57BL/6 wild-type mice were subjected to transverse aortic constriction (TAC) and developed compensated LV hypertrophy after 1 week, which progressed to heart failure characterized by reduced ejection fraction and pulmonary congestion 4 weeks post-TAC. Quantitative, design-based stereology methods were used to estimate number and mean volume of LV cardiomyocytes. DNA strand breaks were visualized using the TUNEL method 6 weeks post-TAC to quantify the number of apoptotic cell nuclei. The volume of the LV myocardium as well as the cardiomyocyte mean volume increased progressively after TAC. In contrast, the number of LV cardiomyocytes remained constant 1 and 4 weeks post-TAC in comparison to sham-operated mice. Moreover, there was no significant difference in the number of cardiomyocyte nuclei stained for DNA strand breaks at 6 weeks post-TAC. It was concluded that the loss of cardiomyocytes is not required for the transition from compensated hypertrophy to heart failure induced by TAC in the female murine heart.


Assuntos
Hipertrofia Ventricular Esquerda/patologia , Miócitos Cardíacos/patologia , Animais , Apoptose , Contagem de Células , Modelos Animais de Doenças , Progressão da Doença , Feminino , Camundongos Endogâmicos C57BL , Pressão
16.
Europace ; 17(10): 1457-66, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26364316

RESUMO

Atrial fibrillation (AF) is the most common sustained arrhythmia in the general population. As an age-related arrhythmia AF is becoming a huge socio-economic burden for European healthcare systems. Despite significant progress in our understanding of the pathophysiology of AF, therapeutic strategies for AF have not changed substantially and the major challenges in the management of AF are still unmet. This lack of progress may be related to the multifactorial pathogenesis of atrial remodelling and AF that hampers the identification of causative pathophysiological alterations in individual patients. Also, again new mechanisms have been identified and the relative contribution of these mechanisms still has to be established. In November 2010, the European Union launched the large collaborative project EUTRAF (European Network of Translational Research in Atrial Fibrillation) to address these challenges. The main aims of EUTRAF are to study the main mechanisms of initiation and perpetuation of AF, to identify the molecular alterations underlying atrial remodelling, to develop markers allowing to monitor this processes, and suggest strategies to treat AF based on insights in newly defined disease mechanisms. This article reports on the objectives, the structure, and initial results of this network.


Assuntos
Fibrilação Atrial/diagnóstico , Fibrilação Atrial/genética , Fibrilação Atrial/fisiopatologia , Remodelamento Atrial , Pesquisa Translacional Biomédica/tendências , Comportamento Cooperativo , Eletrocardiografia , Europa (Continente) , Humanos
17.
Cardiovasc Res ; 106(1): 87-97, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25691541

RESUMO

AIMS: Hypertension is a major risk factor for atrial fibrillation. We hypothesized that arterial hypertension would alter atrial myocyte calcium (Ca2+) handling and that these alterations would serve to trigger atrial tachyarrhythmias. METHODS AND RESULTS: Left atria or left atrial (LA) myocytes were isolated from spontaneously hypertensive rats (SHR) or normotensive Wistar-Kyoto (WKY) controls. Early after the onset of hypertension, at 3 months of age, there were no differences in Ca2+ transients (CaTs) or expression and phosphorylation of Ca2+ handling proteins between SHR and WKY. At 7 months of age, when left ventricular (LV) hypertrophy had progressed and markers of fibrosis were increased in left atrium, CaTs (at 1 Hz stimulation) were still unchanged. Subcellular alterations in Ca2+ handling were observed, however, in SHR atrial myocytes including (i) reduced expression of the α1C subunit of and reduced Ca2+ influx through L-type Ca2+ channels, (ii) reduced expression of ryanodine receptors with increased phosphorylation at Ser2808, (iii) decreased activity of the Na+ / Ca2+ exchanger (at unaltered intracellular Na+ concentration), and (iv) increased SR Ca2+ load with reduced fractional release. These changes were associated with an increased propensity of SHR atrial myocytes to develop frequency-dependent, arrhythmogenic Ca2+ alternans. CONCLUSIONS: In SHR, hypertension induces early subcellular LA myocyte Ca2+ remodelling during compensated LV hypertrophy. In basal conditions, atrial myocyte CaTs are not changed. At increased stimulation frequency, however, SHR atrial myocytes become more prone to arrhythmogenic Ca2+ alternans, suggesting a link between hypertension, atrial Ca2+ homeostasis, and development of atrial tachyarrhythmias.


Assuntos
Arritmias Cardíacas/epidemiologia , Arritmias Cardíacas/metabolismo , Remodelamento Atrial/fisiologia , Cálcio/metabolismo , Átrios do Coração/metabolismo , Hipertensão/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Arritmias Cardíacas/fisiopatologia , Canais de Cálcio Tipo L/metabolismo , Modelos Animais de Doenças , Átrios do Coração/patologia , Hipertensão/patologia , Masculino , Miócitos Cardíacos/patologia , Técnicas de Patch-Clamp , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Fatores de Risco , Retículo Sarcoplasmático/metabolismo , Sódio/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Taquicardia/epidemiologia , Taquicardia/metabolismo , Taquicardia/fisiopatologia
18.
Am J Physiol Heart Circ Physiol ; 307(5): H689-700, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25015964

RESUMO

Urocortin 2 (Ucn2) is a cardioactive peptide exhibiting beneficial effects in normal and failing heart. In cardiomyocytes, it elicits cAMP- and Ca(2+)-dependent positive inotropic and lusitropic effects. We tested the hypothesis that, in addition, Ucn2 activates cardiac nitric oxide (NO) signaling and elucidated the underlying signaling pathways and mechanisms. In isolated rabbit ventricular myocytes, Ucn2 caused concentration- and time-dependent increases in phosphorylation of Akt (Ser473, Thr308), endothelial NO synthase (eNOS) (Ser1177), and ERK1/2 (Thr202/Tyr204). ERK1/2 phosphorylation, but not Akt and eNOS phosphorylation, was suppressed by inhibition of MEK1/2. Increased Akt phosphorylation resulted in increased Akt kinase activity and was mediated by corticotropin-releasing factor 2 (CRF2) receptors (astressin-2B sensitive). Inhibition of phosphatidylinositol 3-kinase (PI3K) diminished both Akt as well as eNOS phosphorylation mediated by Ucn2. Inhibition of protein kinase A (PKA) reduced Ucn2-induced phosphorylation of eNOS but did not affect the increase in phosphorylation of Akt. Conversely, direct receptor-independent elevation of cAMP via forskolin increased phosphorylation of eNOS but not of Akt. Ucn2 increased intracellular NO concentration ([NO]i), [cGMP], [cAMP], and cell shortening. Inhibition of eNOS suppressed the increases in [NO]i and cell shortening. When both PI3K-Akt and cAMP-PKA signaling were inhibited, the Ucn2-induced increases in [NO]i and cell shortening were attenuated. Thus, in rabbit ventricular myocytes, Ucn2 causes activation of cAMP-PKA, PI3K-Akt, and MEK1/2-ERK1/2 signaling. The MEK1/2-ERK1/2 pathway is not required for stimulation of NO signaling in these cells. The other two pathways, cAMP-PKA and PI3K-Akt, converge on eNOS phosphorylation at Ser1177 and result in pronounced and sustained cellular NO production with subsequent stimulation of cGMP signaling.


Assuntos
Ventrículos do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Urocortinas/metabolismo , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Ventrículos do Coração/citologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Coelhos , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Serina/metabolismo , Transdução de Sinais
19.
Circulation ; 130(3): 244-55, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24928680

RESUMO

BACKGROUND: A hallmark of heart failure is impaired cytoplasmic Ca(2+) handling of cardiomyocytes. It remains unknown whether specific alterations in nuclear Ca(2+) handling via altered excitation-transcription coupling contribute to the development and progression of heart failure. METHODS AND RESULTS: Using tissue and isolated cardiomyocytes from nonfailing and failing human hearts, as well as mouse and rabbit models of hypertrophy and heart failure, we provide compelling evidence for structural and functional changes of the nuclear envelope and nuclear Ca(2+) handling in cardiomyocytes as remodeling progresses. Increased nuclear size and less frequent intrusions of the nuclear envelope into the nuclear lumen indicated altered nuclear structure that could have functional consequences. In the (peri)nuclear compartment, there was also reduced expression of Ca(2+) pumps and ryanodine receptors, increased expression of inositol-1,4,5-trisphosphate receptors, and differential orientation among these Ca(2+) transporters. These changes were associated with altered nucleoplasmic Ca(2+) handling in cardiomyocytes from hypertrophied and failing hearts, reflected as increased diastolic Ca(2+) levels with diminished and prolonged nuclear Ca(2+) transients and slowed intranuclear Ca(2+) diffusion. Altered nucleoplasmic Ca(2+) levels were translated to higher activation of nuclear Ca(2+)/calmodulin-dependent protein kinase II and nuclear export of histone deacetylases. Importantly, the nuclear Ca(2+) alterations occurred early during hypertrophy and preceded the cytoplasmic Ca(2+) changes that are typical of heart failure. CONCLUSIONS: During cardiac remodeling, early changes of cardiomyocyte nuclei cause altered nuclear Ca(2+) signaling implicated in hypertrophic gene program activation. Normalization of nuclear Ca(2+) regulation may therefore be a novel therapeutic approach to prevent adverse cardiac remodeling.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Cardiomegalia/fisiopatologia , Núcleo Celular/metabolismo , Insuficiência Cardíaca/fisiopatologia , Remodelação Ventricular/fisiologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Modelos Animais de Doenças , Estimulação Elétrica , Feminino , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Histona Desacetilases/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Coelhos
20.
J Am Coll Cardiol ; 63(15): 1569-79, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24315909

RESUMO

OBJECTIVES: This study sought to explore whether subclinical alterations of sarcoplasmic reticulum (SR) Ca(2+) release through cardiac ryanodine receptors (RyR2) aggravate cardiac remodeling in mice carrying a human RyR2(R4496C+/-) gain-of-function mutation in response to pressure overload. BACKGROUND: RyR2 dysfunction causes increased diastolic SR Ca(2+) release associated with arrhythmias and contractile dysfunction in inherited and acquired cardiac diseases, such as catecholaminergic polymorphic ventricular tachycardia and heart failure (HF). METHODS: Functional and structural properties of wild-type and catecholaminergic polymorphic ventricular tachycardia-associated RyR2(R4496C+/-) hearts were characterized under conditions of pressure overload induced by transverse aortic constriction (TAC). RESULTS: Wild-type and RyR2(R4496C+/-) hearts had comparable structural and functional properties at baseline. After TAC, RyR2(R4496C+/-) hearts responded with eccentric hypertrophy, substantial fibrosis, ventricular dilation, and reduced fractional shortening, ultimately resulting in overt HF. RyR2(R4496C+/-)-TAC cardiomyocytes showed increased incidence of spontaneous SR Ca(2+) release events, reduced Ca(2+) transient peak amplitude, and SR Ca(2+) content as well as reduced SR Ca(2+)-ATPase 2a and increased Na(+)/Ca(2+)-exchanger protein expression. HF phenotype in RyR2(R4496C+/-)-TAC mice was associated with increased mortality due to pump failure but not tachyarrhythmic events. RyR2-stabilizer K201 markedly reduced Ca(2+) spark frequency in RyR2(R4496C+/-)-TAC cardiomyocytes. Mini-osmotic pump infusion of K201 prevented deleterious remodeling and improved survival in RyR2(R4496C+/-)-TAC mice. CONCLUSIONS: The combination of subclinical congenital alteration of SR Ca(2+) release and pressure overload promoted eccentric remodeling and HF death in RyR2(R4496C+/-) mice, and pharmacological RyR2 stabilization prevented this deleterious interaction. These findings suggest potential clinical relevance for patients with acquired or inherited gain-of-function of RyR2-mediated SR Ca(2+) release.


Assuntos
Sinalização do Cálcio/genética , DNA/genética , Insuficiência Cardíaca/genética , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo , Remodelação Ventricular/genética , Animais , Análise Mutacional de DNA , Modelos Animais de Doenças , Progressão da Doença , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Camundongos , Camundongos Knockout , Mutação , Miócitos Cardíacos/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Pressão Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...